본문 바로가기
프로젝트 기록/AEB_다학제간캡스톤디자인1

[실습] YOLOv3, v4 객체 인식 실습

by 소요이 2024. 3. 20.
728x90

yolov3 이미지 실습

 

 

CUDA-version: 12020 (12020), cuDNN: 8.9.6, GPU count: 1  
 OpenCV version: 4.5.4
 0 : compute_capability = 750, cudnn_half = 0, GPU: Tesla T4 
net.optimized_memory = 0 
mini_batch = 1, batch = 1, time_steps = 1, train = 0 
   layer   filters  size/strd(dil)      input                output
   0 Create CUDA-stream - 0 
 Create cudnn-handle 0 
conv     32       3 x 3/ 1    416 x 416 x   3 ->  416 x 416 x  32 0.299 BF
   1 conv     64       3 x 3/ 2    416 x 416 x  32 ->  208 x 208 x  64 1.595 BF
   2 conv     32       1 x 1/ 1    208 x 208 x  64 ->  208 x 208 x  32 0.177 BF
   3 conv     64       3 x 3/ 1    208 x 208 x  32 ->  208 x 208 x  64 1.595 BF
   4 Shortcut Layer: 1,  wt = 0, wn = 0, outputs: 208 x 208 x  64 0.003 BF
   5 conv    128       3 x 3/ 2    208 x 208 x  64 ->  104 x 104 x 128 1.595 BF
   6 conv     64       1 x 1/ 1    104 x 104 x 128 ->  104 x 104 x  64 0.177 BF
   7 conv    128       3 x 3/ 1    104 x 104 x  64 ->  104 x 104 x 128 1.595 BF
   8 Shortcut Layer: 5,  wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF
   9 conv     64       1 x 1/ 1    104 x 104 x 128 ->  104 x 104 x  64 0.177 BF
  10 conv    128       3 x 3/ 1    104 x 104 x  64 ->  104 x 104 x 128 1.595 BF
  11 Shortcut Layer: 8,  wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF
  12 conv    256       3 x 3/ 2    104 x 104 x 128 ->   52 x  52 x 256 1.595 BF
  13 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  14 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  15 Shortcut Layer: 12,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  16 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  17 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  18 Shortcut Layer: 15,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  19 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  20 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  21 Shortcut Layer: 18,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  22 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  23 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  24 Shortcut Layer: 21,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  25 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  26 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  27 Shortcut Layer: 24,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  28 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  29 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  30 Shortcut Layer: 27,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  31 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  32 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  33 Shortcut Layer: 30,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  34 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  35 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  36 Shortcut Layer: 33,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  37 conv    512       3 x 3/ 2     52 x  52 x 256 ->   26 x  26 x 512 1.595 BF
  38 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  39 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  40 Shortcut Layer: 37,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  41 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  42 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  43 Shortcut Layer: 40,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  44 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  45 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  46 Shortcut Layer: 43,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  47 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  48 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  49 Shortcut Layer: 46,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  50 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  51 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  52 Shortcut Layer: 49,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  53 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  54 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  55 Shortcut Layer: 52,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  56 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  57 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  58 Shortcut Layer: 55,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  59 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  60 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  61 Shortcut Layer: 58,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  62 conv   1024       3 x 3/ 2     26 x  26 x 512 ->   13 x  13 x1024 1.595 BF
  63 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  64 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  65 Shortcut Layer: 62,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
  66 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  67 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  68 Shortcut Layer: 65,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
  69 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  70 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  71 Shortcut Layer: 68,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
  72 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  73 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  74 Shortcut Layer: 71,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
  75 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  76 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  77 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  78 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  79 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  80 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  81 conv    255       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 255 0.088 BF
  82 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
  83 route  79 		                           ->   13 x  13 x 512 
  84 conv    256       1 x 1/ 1     13 x  13 x 512 ->   13 x  13 x 256 0.044 BF
  85 upsample                 2x    13 x  13 x 256 ->   26 x  26 x 256
  86 route  85 61 	                           ->   26 x  26 x 768 
  87 conv    256       1 x 1/ 1     26 x  26 x 768 ->   26 x  26 x 256 0.266 BF
  88 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  89 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  90 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  91 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  92 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  93 conv    255       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 255 0.177 BF
  94 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
  95 route  91 		                           ->   26 x  26 x 256 
  96 conv    128       1 x 1/ 1     26 x  26 x 256 ->   26 x  26 x 128 0.044 BF
  97 upsample                 2x    26 x  26 x 128 ->   52 x  52 x 128
  98 route  97 36 	                           ->   52 x  52 x 384 
  99 conv    128       1 x 1/ 1     52 x  52 x 384 ->   52 x  52 x 128 0.266 BF
 100 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
 101 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
 102 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
 103 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
 104 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
 105 conv    255       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 255 0.353 BF
 106 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 65.879 
avg_outputs = 532444 
 Allocate additional workspace_size = 52.44 MB 
Loading weights from yolov3.weights...
 seen 64, trained: 32013 K-images (500 Kilo-batches_64) 
Done! Loaded 107 layers from weights-file 
 Detection layer: 82 - type = 28 
 Detection layer: 94 - type = 28 
 Detection layer: 106 - type = 28 
data/dog.jpg: Predicted in 102.170000 milli-seconds.
bicycle: 99%
dog: 100%
truck: 93%
OpenCV exception: show_image_cv

 

 


 

yolov3 영상데이터 실습

 

위처럼 

-upload(),

- kittidata1로 이름 바꿔줘야 함

 

 

 

 

결국..!

'프로젝트 기록 > AEB_다학제간캡스톤디자인1' 카테고리의 다른 글

[실습] Colab CV line detect 실습  (0) 2024.03.28
[실습] CV2 사용  (0) 2024.03.27
object tracking  (0) 2024.03.27
[실습] CV_object_recognition  (0) 2024.03.20
CNN실습  (0) 2024.03.13